Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
JCI Insight ; 8(14)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37318849

RESUMEN

Influenza A virus (IAV) infection is commonly complicated by secondary bacterial infections that lead to increased morbidity and mortality. Our recent work demonstrates that IAV disrupts airway homeostasis, leading to airway pathophysiology resembling cystic fibrosis disease through diminished cystic fibrosis transmembrane conductance regulator (CFTR) function. Here, we use human airway organotypic cultures to investigate how IAV alters the airway microenvironment to increase susceptibility to secondary infection with Streptococcus pneumoniae (Spn). We observed that IAV-induced CFTR dysfunction and airway surface liquid acidification is central to increasing susceptibility to Spn. Additionally, we observed that IAV induced profound transcriptional changes in the airway epithelium and proteomic changes in the airway surface liquid in both CFTR-dependent and -independent manners. These changes correspond to multiple diminished host defense pathways and altered airway epithelial function. Collectively, these findings highlight both the importance of CFTR function during infectious challenge and demonstrate a central role for the lung epithelium in secondary bacterial infections following IAV.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Gripe Humana , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Streptococcus pneumoniae , Gripe Humana/complicaciones , Gripe Humana/metabolismo , Proteómica , Pulmón/metabolismo
2.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37071484

RESUMEN

Neutrophilic inflammation characterizes several respiratory viral infections, including COVID-19-related acute respiratory distress syndrome, although its contribution to disease pathogenesis remains poorly understood. Blood and airway immune cells from 52 patients with severe COVID-19 were phenotyped by flow cytometry. Samples and clinical data were collected at 2 separate time points to assess changes during ICU stay. Blockade of type I interferon and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) signaling was performed in vitro to determine their contribution to viral clearance in A2 neutrophils. We identified 2 neutrophil subpopulations (A1 and A2) in the airway compartment, where loss of the A2 subset correlated with increased viral burden and reduced 30-day survival. A2 neutrophils exhibited a discrete antiviral response with an increased interferon signature. Blockade of type I interferon attenuated viral clearance in A2 neutrophils and downregulated IFIT3 and key catabolic genes, demonstrating direct antiviral neutrophil function. Knockdown of IFIT3 in A2 neutrophils led to loss of IRF3 phosphorylation, with consequent reduced viral catabolism, providing the first discrete mechanism to our knowledge of type I interferon signaling in neutrophils. The identification of this neutrophil phenotype and its association with severe COVID-19 outcomes emphasizes its likely importance in other respiratory viral infections and potential for new therapeutic approaches in viral illness.


Asunto(s)
COVID-19 , Interferón Tipo I , Síndrome de Dificultad Respiratoria , Virosis , Humanos , Neutrófilos , Antivirales/farmacología , Antivirales/uso terapéutico
3.
Res Sq ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993474

RESUMEN

Neutrophilic inflammation characterizes several respiratory viral infections including COVID-19-related ARDS, although its contribution to disease pathogenesis remains poorly understood. Here, we identified two neutrophil subpopulations (A1 and A2) in the airway compartment of 52 severe COVID-19 subjects, where loss of the A2 subset correlated with increased viral burden and reduced 30-days survival. A2 neutrophils showcased a discrete antiviral response with an increased interferon signature. Blockade of type I interferon attenuated viral clearance in A2 neutrophils and downregulated IFIT3 and key catabolic genes, demonstrating direct antiviral neutrophil function. Knockdown of IFIT3 in A2 neutrophils led to loss of IRF3 phosphorylation with consequent reduced viral catabolism, providing the first discrete mechanism of type I interferon signaling in neutrophils. The identification of this novel neutrophil phenotype and its association with severe COVID-19 outcomes emphasizes its likely importance in other respiratory viral infections and potential for new therapeutic approaches in viral illness.

4.
Blood Adv ; 7(15): 4200-4214, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-36920790

RESUMEN

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1ß; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Megacariocitos/metabolismo , FN-kappa B/metabolismo , Pulmón/metabolismo
5.
bioRxiv ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778321

RESUMEN

Background: Streptococcus pneumoniae (Spn) is typically an asymptomatic colonizer of the nasopharynx but it also causes pneumonia and disseminated disease affecting various host anatomical sites. Transition from colonization to invasive disease is not well understood. Studies have shown that such a transition can occur as result of influenza A virus coinfection. Methods: We investigated the pneumococcal (serotype 19F, strain EF3030) and host transcriptomes with and without influenza A virus (A/California/07 2009 pH1N1) infection at this transition. This was done using primary, differentiated Human Bronchial Epithelial Cells (nHBEC) in a transwell monolayer model at an Air-Liquid Interface (ALI), with multispecies deep RNA-seq. Results: Distinct pneumococcal gene expression profiles were observed in the presence and absence of influenza. Influenza coinfection allowed for significantly greater pneumococcal growth and triggered the differential expression of bacterial genes corresponding to multiple metabolic pathways; in totality suggesting a fundamentally altered bacterial metabolic state and greater nutrient availability when coinfecting with influenza. Surprisingly, nHBEC transcriptomes were only modestly perturbed by infection with EF3030 alone in comparison to that resulting from Influenza A infection or coinfection, which had drastic alterations in thousands of genes. Influenza infected host transcriptomes suggest significant loss of ciliary function in host nHBEC cells. Conclusions: Influenza A virus infection of nHBEC promotes pneumococcal infection. One reason for this is an altered metabolic state by the bacterium, presumably due to host components made available as result of viral infection. Influenza infection had a far greater impact on the host response than did bacterial infection alone, and this included down regulation of genes involved in expressing cilia. We conclude that influenza infection promotes a pneumococcal metabolic shift allowing for transition from colonization to disseminated disease.

6.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L493-L506, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36809189

RESUMEN

The coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2 coronavirus, is devastatingly impacting human health. A prominent component of COVID-19 is the infection and destruction of the ciliated respiratory cells, which perpetuates dissemination and disrupts protective mucociliary transport (MCT) function, an innate defense of the respiratory tract. Thus, drugs that augment MCT could improve the barrier function of the airway epithelium and reduce viral replication and, ultimately, COVID-19 outcomes. We tested five agents known to increase MCT through distinct mechanisms for activity against SARS-CoV-2 infection using a model of human respiratory epithelial cells terminally differentiated in an air/liquid interphase. Three of the five mucoactive compounds tested showed significant inhibitory activity against SARS-CoV-2 replication. An archetype mucoactive agent, ARINA-1, blocked viral replication and therefore epithelial cell injury; thus, it was further studied using biochemical, genetic, and biophysical methods to ascertain the mechanism of action via the improvement of MCT. ARINA-1 antiviral activity was dependent on enhancing the MCT cellular response, since terminal differentiation, intact ciliary expression, and motion were required for ARINA-1-mediated anti-SARS-CoV2 protection. Ultimately, we showed that the improvement of cilia movement was caused by ARINA-1-mediated regulation of the redox state of the intracellular environment, which benefited MCT. Our study indicates that intact MCT reduces SARS-CoV-2 infection, and its pharmacologic activation may be effective as an anti-COVID-19 treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Depuración Mucociliar , Sistema Respiratorio , Células Epiteliales , Replicación Viral
7.
Crit Care ; 27(1): 34, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691080

RESUMEN

BACKGROUND: Recent single-center reports have suggested that community-acquired bacteremic co-infection in the context of Coronavirus disease 2019 (COVID-19) may be an important driver of mortality; however, these reports have not been validated with a multicenter, demographically diverse, cohort study with data spanning the pandemic. METHODS: In this multicenter, retrospective cohort study, inpatient encounters were assessed for COVID-19 with community-acquired bacteremic co-infection using 48-h post-admission blood cultures and grouped by: (1) confirmed co-infection [recovery of bacterial pathogen], (2) suspected co-infection [negative culture with ≥ 2 antimicrobials administered], and (3) no evidence of co-infection [no culture]. The primary outcomes were in-hospital mortality, ICU admission, and mechanical ventilation. COVID-19 bacterial co-infection risk factors and impact on primary outcomes were determined using multivariate logistic regressions and expressed as adjusted odds ratios with 95% confidence intervals (Cohort, OR 95% CI, Wald test p value). RESULTS: The studied cohorts included 13,781 COVID-19 inpatient encounters from 2020 to 2022 in the University of Alabama at Birmingham (UAB, n = 4075) and Ochsner Louisiana State University Health-Shreveport (OLHS, n = 9706) cohorts with confirmed (2.5%), suspected (46%), or no community-acquired bacterial co-infection (51.5%) and a comparison cohort consisting of 99,170 inpatient encounters from 2010 to 2019 (UAB pre-COVID-19 pandemic cohort). Significantly increased likelihood of COVID-19 bacterial co-infection was observed in patients with elevated ≥ 15 neutrophil-to-lymphocyte ratio (UAB: 1.95 [1.21-3.07]; OLHS: 3.65 [2.66-5.05], p < 0.001 for both) within 48-h of hospital admission. Bacterial co-infection was found to confer the greatest increased risk for in-hospital mortality (UAB: 3.07 [2.42-5.46]; OLHS: 4.05 [2.29-6.97], p < 0.001 for both), ICU admission (UAB: 4.47 [2.87-7.09], OLHS: 2.65 [2.00-3.48], p < 0.001 for both), and mechanical ventilation (UAB: 3.84 [2.21-6.12]; OLHS: 2.75 [1.87-3.92], p < 0.001 for both) across both cohorts, as compared to other risk factors for severe disease. Observed mortality in COVID-19 bacterial co-infection (24%) dramatically exceeds the mortality rate associated with community-acquired bacteremia in pre-COVID-19 pandemic inpatients (5.9%) and was consistent across alpha, delta, and omicron SARS-CoV-2 variants. CONCLUSIONS: Elevated neutrophil-to-lymphocyte ratio is a prognostic indicator of COVID-19 bacterial co-infection within 48-h of admission. Community-acquired bacterial co-infection, as defined by blood culture-positive results, confers greater increased risk of in-hospital mortality, ICU admission, and mechanical ventilation than previously described risk factors (advanced age, select comorbidities, male sex) for COVID-19 mortality, and is independent of SARS-CoV-2 variant.


Asunto(s)
Bacteriemia , COVID-19 , Coinfección , Infecciones Comunitarias Adquiridas , Humanos , Masculino , SARS-CoV-2 , Estudios de Cohortes , Estudios Retrospectivos , Respiración Artificial , Pandemias , Mortalidad Hospitalaria , Bacterias , Factores de Riesgo , Unidades de Cuidados Intensivos
8.
JCI Insight ; 8(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36625345

RESUMEN

Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma. Micro-optical coherence tomography was used to quantitate functional changes in the MCT apparatus. Both genomic and subgenomic viral RNA pathological and physiological changes were monitored in parallel. We show that SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 days postinfection (dpi) in hamsters, principally due to 79% diminished airway coverage of motile cilia. Correlating quantitation of physiological, virological, and pathological changes reveals steadily descending infection from the upper airways to lower airways to lung parenchyma within 7 dpi. Our results indicate that functional deficits of the MCT apparatus are a key aspect of COVID-19 pathogenesis, may extend viral retention, and could pose a risk factor for secondary infection. Clinically, monitoring abnormal ciliated cell function may indicate disease progression. Therapies directed toward the MCT apparatus deserve further investigation.


Asunto(s)
COVID-19 , Animales , Cricetinae , COVID-19/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Pulmón/diagnóstico por imagen , Pulmón/patología , Mesocricetus , Depuración Mucociliar , SARS-CoV-2 , ARN Subgenómico
9.
Hum Vaccin Immunother ; 18(6): 2127292, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36194255

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has illustrated the critical need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive approach for preventing COVID-19 as the nasal mucosa is the site of initial SARS-CoV-2 entry and viral replication prior to aspiration into the lungs. We previously demonstrated that a single intranasal administration of a candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain of the SARS-CoV-2 spike protein (AdCOVID) induced robust immunity in both the airway mucosa and periphery, and completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge. Here we show that a single intranasal administration of AdCOVID limits viral replication in the nasal cavity of K18-hACE2 mice. AdCOVID also induces sterilizing immunity in the lungs of mice as reflected by the absence of infectious virus. Finally, AdCOVID prevents SARS-CoV-2 induced pathological damage in the lungs of mice. These data show that AdCOVID not only limits viral replication in the respiratory tract, but it also prevents virus-induced inflammation and immunopathology following SARS-CoV-2 infection.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Administración Intranasal , Anticuerpos Antivirales , COVID-19/prevención & control , Pulmón , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus , Vacunas Virales/administración & dosificación , Vacunas contra la COVID-19/administración & dosificación
10.
bioRxiv ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35075457

RESUMEN

Substantial clinical evidence supports the notion that ciliary function in the airways plays an important role in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, consequent impaired mucociliary transport (MCT) remains unknown for the intact MCT apparatus from an in vivo model of disease. Using golden Syrian hamsters, a common animal model that recapitulates human COVID-19, we quantitatively followed the time course of physiological, virological, and pathological changes upon SARS-CoV-2 infection, as well as the deficiency of the MCT apparatus using micro-optical coherence tomography, a novel method to visualize and simultaneously quantitate multiple aspects of the functional microanatomy of intact airways. Corresponding to progressive weight loss up to 7 days post-infection (dpi), viral detection and histopathological analysis in both the trachea and lung revealed steadily descending infection from the upper airways, as the main target of viral invasion, to lower airways and parenchymal lung, which are likely injured through indirect mechanisms. SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 dpi, largely due to diminished motile ciliation coverage, but not airway surface liquid depth, periciliary liquid depth, or cilia beat frequency of residual motile cilia. Further analysis indicated that the fewer motile cilia combined with abnormal ciliary motion of residual cilia contributed to the delayed MCT. The time course of physiological, virological, and pathological progression suggest that functional deficits of the MCT apparatus predispose to COVID-19 pathogenesis by extending viral retention and may be a risk factor for secondary infection. As a consequence, therapies directed towards the MCT apparatus deserve further investigation as a treatment modality.

11.
medRxiv ; 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518842

RESUMEN

Multi-specific and long-lasting T cell immunity have been recognized as indicators for long term protection against pathogens including the novel coronavirus SARS-CoV-2, the causative agent of the COVID-19 pandemic. Functional significance of peripheral memory T cells in individuals recovering from COVID-19 (COVID-19 + ) are beginning to be appreciated; but little is known about lung resident memory T cells (lung TRM) in SARS-CoV-2 infection. Here, we utilize a perfused three dimensional (3D) human lung tissue model and identify pre-existing local T cell immunity against SARS-CoV-2 proteins in lung tissues. We report ex vivo maintenance of functional multi-specific IFN-γ secreting lung TRM in COVID-19 + and their induction in lung tissues of vaccinated COVID-19 + . Importantly, we identify SARS-CoV-2 peptide-responding B cells and IgA + plasma cells in lung tissues of COVID-19 + in ex vivo 3D-tissue models. Our study highlights the importance of balanced and local anti-viral immune response in the lung with persistent induction of TRM and IgA + plasma cells for future protection against SARS-CoV-2 infection. Further, our data suggest that inclusion of multiple viral antigens in vaccine approaches may broaden the functional profile of memory T cells to combat the severity of coronavirus infection.

12.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34452006

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.

13.
bioRxiv ; 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282419

RESUMEN

The recent emergence of a novel coronavirus, SARS-CoV-2, has led to the global pandemic of the severe disease COVID-19 in humans. While efforts to quickly identify effective antiviral therapies have focused largely on repurposing existing drugs 1-4 , the current standard of care, remdesivir, remains the only authorized antiviral intervention of COVID-19 and provides only modest clinical benefits 5 . Here we show that water-soluble derivatives of α-tocopherol have potent antiviral activity and synergize with remdesivir as inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Through an artificial-intelligence-driven in silico screen and in vitro viral inhibition assay, we identified D-α-tocopherol polyethylene glycol succinate (TPGS) as an effective antiviral against SARS-CoV-2 and ß-coronaviruses more broadly that also displays strong synergy with remdesivir. We subsequently determined that TPGS and other water-soluble derivatives of α-tocopherol inhibit the transcriptional activity of purified SARS-CoV-2 RdRp and identified affinity binding sites for these compounds within a conserved, hydrophobic interface between SARS-CoV-2 nonstructural protein 7 and nonstructural protein 8 that is functionally implicated in the assembly of the SARS-CoV-2 RdRp 6 . In summary, we conclude that solubilizing modifications to α-tocopherol allow it to interact with the SARS-CoV-2 RdRp, making it an effective antiviral molecule alone and even more so in combination with remdesivir. These findings are significant given that many tocopherol derivatives, including TPGS, are considered safe for humans, orally bioavailable, and dramatically enhance the activity of the only approved antiviral for SARS-CoV-2 infection 7-9 .

14.
Sci Rep ; 11(1): 10515, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006901

RESUMEN

Acute respiratory failure (ARF) requiring mechanical ventilation, a complicating factor in sepsis and other disorders, is associated with high morbidity and mortality. Despite its severity and prevalence, treatment options are limited. In light of accumulating evidence that mitochondrial abnormalities are common in ARF, here we applied broad spectrum quantitative and semiquantitative metabolomic analyses of serum from ARF patients to detect bioenergetic dysfunction and determine its association with survival. Plasma samples from surviving and non-surviving patients (N = 15/group) were taken at day 1 and day 3 after admission to the medical intensive care unit and, in survivors, at hospital discharge. Significant differences between survivors and non-survivors (ANOVA, 5% FDR) include bioenergetically relevant intermediates of redox cofactors nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP), increased acyl-carnitines, bile acids, and decreased acyl-glycerophosphocholines. Many metabolites associated with poor outcomes are substrates of NAD(P)-dependent enzymatic processes, while alterations in NAD cofactors rely on bioavailability of dietary B-vitamins thiamine, riboflavin and pyridoxine. Changes in the efficiency of the nicotinamide-derived cofactors' biosynthetic pathways also associate with alterations in glutathione-dependent drug metabolism characterized by substantial differences observed in the acetaminophen metabolome. Based on these findings, a four-feature model developed with semi-quantitative and quantitative metabolomic results predicted patient outcomes with high accuracy (AUROC = 0.91). Collectively, this metabolomic endotype points to a close association between mitochondrial and bioenergetic dysfunction and mortality in human ARF, thus pointing to new pharmacologic targets to reduce mortality in this condition.


Asunto(s)
Enfermedad Crítica , Metabolismo Energético , Metabolómica , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/mortalidad , Enfermedad Aguda , Adulto , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , NAD/metabolismo , NADP/metabolismo , Estudios Retrospectivos
16.
bioRxiv ; 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33052351

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective preventive vaccination to reduce burden and spread of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) in humans. Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry before viral spread to the lung. Although SARS-CoV-2 vaccine development is rapidly progressing, the current intramuscular vaccines are designed to elicit systemic immunity without conferring mucosal immunity. Here, we show that AdCOVID, an intranasal adenovirus type 5 (Ad5)-vectored vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, elicits a strong and focused immune response against RBD through the induction of mucosal IgA, serum neutralizing antibodies and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. Therefore, AdCOVID, which promotes concomitant systemic and local mucosal immunity, represents a promising COVID-19 vaccine candidate.

17.
Cell Rep ; 32(8): 108062, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32846120

RESUMEN

Pneumonias caused by influenza A virus (IAV) co- and secondary bacterial infections are characterized by their severity and high mortality rate. Previously, we have shown that bacterial pore-forming toxin (PFT)-mediated necroptosis is a key driver of acute lung injury during bacterial pneumonia. Here, we evaluate the impact of IAV on PFT-induced acute lung injury during co- and secondary Streptococcus pneumoniae (Spn) infection. We observe that IAV synergistically sensitizes lung epithelial cells for PFT-mediated necroptosis in vitro and in murine models of Spn co-infection and secondary infection. Pharmacoelogical induction of oxidative stress without virus sensitizes cells for PFT-mediated necroptosis. Antioxidant treatment or inhibition of necroptosis reduces disease severity during secondary bacterial infection. Our results advance our understanding on the molecular basis of co- and secondary bacterial infection to influenza and identify necroptosis inhibition and antioxidant therapy as potential intervention strategies.


Asunto(s)
Gripe Humana/complicaciones , Pulmón/microbiología , Necroptosis/genética , Estrés Oxidativo/genética , Animales , Humanos , Ratones
18.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L444-L455, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755307

RESUMEN

Cold viruses have generally been considered fairly innocuous until the appearance of the severe acute respiratory coronavirus 2 (SARS-CoV-2) in 2019, which caused the coronavirus disease 2019 (COVID-19) global pandemic. Two previous viruses foreshadowed that a coronavirus could potentially have devastating consequences in 2002 [severe acute respiratory coronavirus (SARS-CoV)] and in 2012 [Middle East respiratory syndrome coronavirus (MERS-CoV)]. The question that arises is why these viruses are so different from the relatively harmless cold viruses. On the basis of an analysis of the current literature and using bioinformatic approaches, we examined the potential human miRNA interactions with the SARS-CoV-2's genome and compared the miRNA target sites in seven coronavirus genomes that include SARS-CoV-2, MERS-CoV, SARS-CoV, and four nonpathogenic coronaviruses. Here, we discuss the possibility that pathogenic human coronaviruses, including SARS-CoV-2, could modulate host miRNA levels by acting as miRNA sponges to facilitate viral replication and/or to avoid immune responses.


Asunto(s)
Betacoronavirus/inmunología , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , MicroARNs/genética , MicroARNs/inmunología , Neumonía Viral/virología , Replicación Viral , COVID-19 , Infecciones por Coronavirus/inmunología , Humanos , Pandemias , Neumonía Viral/inmunología , SARS-CoV-2
19.
J Biol Chem ; 295(4): 1153-1164, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31843969

RESUMEN

A critical role of influenza A virus nonstructural protein 1 (NS1) is to antagonize the host cellular antiviral response. NS1 accomplishes this role through numerous interactions with host proteins, including the cytoplasmic pathogen recognition receptor, retinoic acid-inducible gene I (RIG-I). Although the consequences of this interaction have been studied, the complete mechanism by which NS1 antagonizes RIG-I signaling remains unclear. We demonstrated previously that the NS1 RNA-binding domain (NS1RBD) interacts directly with the second caspase activation and recruitment domain (CARD) of RIG-I. We also identified that a single strain-specific polymorphism in the NS1RBD (R21Q) completely abrogates this interaction. Here we investigate the functional consequences of an R21Q mutation on NS1's ability to antagonize RIG-I signaling. We observed that an influenza virus harboring the R21Q mutation in NS1 results in significant up-regulation of RIG-I signaling. In support of this, we determined that an R21Q mutation in NS1 results in a marked deficit in NS1's ability to antagonize TRIM25-mediated ubiquitination of the RIG-I CARDs, a critical step in RIG-I activation. We also observed that WT NS1 is capable of binding directly to the tandem RIG-I CARDs, whereas the R21Q mutation in NS1 significantly inhibits this interaction. Furthermore, we determined that the R21Q mutation does not impede the interaction between NS1 and TRIM25 or NS1RBD's ability to bind RNA. The data presented here offer significant insights into NS1 antagonism of RIG-I and illustrate the importance of understanding the role of strain-specific polymorphisms in the context of this specific NS1 function.


Asunto(s)
Dominio de Reclutamiento y Activación de Caspasas , Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/metabolismo , Proteínas no Estructurales Virales/metabolismo , Células A549 , Secuencia de Aminoácidos , Animales , Perros , Regulación de la Expresión Génica , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Cinética , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Modelos Animales , Modelos Biológicos , Mutación/genética , Fosforilación , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Viral/metabolismo , Especificidad de la Especie , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral
20.
J Biol Chem ; 295(6): 1704-1715, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31882535

RESUMEN

The influenza A (H1N1)pdm09 outbreak in 2009 exemplified the problems accompanying the emergence of novel influenza A virus (IAV) strains and their unanticipated virulence in populations with no pre-existing immunity. Neuraminidase inhibitors (NAIs) are currently the drugs of choice for intervention against IAV outbreaks, but there are concerns that NAI-resistant viruses can transmit to high-risk populations. These issues highlight the need for new approaches that address the annual influenza burden. In this study, we examined whether palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI) effectively antagonize (H1N1)pdm09 infection. POPG and PI markedly suppressed cytopathic effects and attenuated viral gene expression in (H1N1)pdm09-infected Madin-Darby canine kidney cells. POPG and PI bound to (H1N1)pdm09 with high affinity and disrupted viral spread from infected to noninfected cells in tissue culture and also reduced (H1N1)pdm09 propagation by a factor of 102 after viral infection was established in vitro In a mouse infection model of (H1N1)pdm09, POPG and PI significantly reduced lung inflammation and viral burden. Of note, when mice were challenged with a typically lethal dose of 1000 plaque-forming units of (H1N1)pdm09, survival after 10 days was 100% (14 of 14 mice) with the POPG treatment compared with 0% (0 of 14 mice) without this treatment. POPG also significantly reduced inflammatory infiltrates and the viral burden induced by (H1N1)pdm09 infection in a ferret model. These findings indicate that anionic phospholipids potently and efficiently disrupt influenza infections in animal models.


Asunto(s)
Antivirales/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Fosfatidilgliceroles/uso terapéutico , Fosfatidilinositoles/uso terapéutico , Animales , Antivirales/farmacología , Modelos Animales de Enfermedad , Perros , Femenino , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , Fosfatidilgliceroles/farmacología , Fosfatidilinositoles/farmacología , Surfactantes Pulmonares/farmacología , Surfactantes Pulmonares/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...